5.4 信息时代离不开传感器 知识点题库

为了测量木块与木板间的动摩擦因数μ,某小组使用位移传感器设计了如图甲所示实验装置,让木块从倾斜木板上一点A由静止释放,位移传感器可以测出木块到传感器的距离.位移传感器连接计算机,描绘出滑块相对传感器的位移x随时间t的变化规律如图乙所示.

  1. (1) 根据上述图线,计算0.4s时木块的速度v=m/s,木块加速度a=m/s2;(结果均保留2位有效数字)

  2. (2) 为了测定动摩擦因数μ,还需要测量的量是;(已知当地的重力加速度g)

为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0cm的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为△t1=0.30s,通过第二个光电门的时间为△t2=0.10s,滑块经过第一个光电门的速度大小;滑块经过第二个光电门的速度大小.若遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为△t=3.0s.则滑块的加速度大小,两个光电门之间的距离大小是.(结果保留一位有效数字)

如图所示是利用光电门近似测瞬时速度的实验,根据滑块上安装宽度为△S的遮光条和遮光条通过光电门的时间△t,就可以表示出遮光条通过光电门的平均速度 =(用△S,△t表示),这个速度可以近似认为就是通过光电门的瞬时速度,若遮光条宽度△S=3cm,滑块通过第一个光电门的时间为△t1=0.15s,通过第二个光电门的时间为△t2=0.1s,则滑块经过第一个光电门时的瞬时速度为V1=m/s,滑块经过第二个光电门时的瞬时速度为V2=m/s.

关于电熨斗下列说法正确的(   )

A . 电熨斗能自动控制温度主要利用了双金属片,两片金属的膨胀系数相同 B . 常温下,上下触点是分开的;温度过高时,双金属片发生弯曲使上下触点分开 C . 需要较高温度熨烫时,要调节温度旋钮,使升降螺丝下移并推动弹性铜片下移 D . 电熨斗中的双金属片是一种半导体材料

某实验小组探究合外力做功和动能变化的关系,他们将宽度一定的挡光片固定在小车上,用不可伸长的细线将其通过一个定滑轮与砝码盘相连,在水平桌面上的A、B两点各安装一个光电门,记录小车通过A、B位置时的遮光时间,小车中可以放置砝码.

  1. (1) 实验主要步骤如下:

    ①实验前应将木板左端略微抬高,使小车通过两光电门的遮光时间相等,这样做的目的是

    ②用长度测量工具游标卡尺测量挡光片宽度为d,再用刻度尺量得A、B之间的距离为L;

    ③将小车停在C点,在砝码盘中放上砝码,小车在细线拉动下运动,记录此时小车(含挡光片及车中砝码)的质量为M,砝码盘和盘中砝码的总质量为m,小车通过A、B的遮光时间分别为t1、t2 , 已知重力加速度为g,则可以得到A至B过程中小车的合外力做功为,小车的动能变化量为(用相应的字母m、M、t1、t2、L、d表示);

    ④在小车中增减砝码或在砝码盘中增减砝码,重复③的操作.

  2. (2) 为了实验能达到预期效果,步骤③中M、m应满足的条件是

图1为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:

①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测量两光电门之间的距离s;

②调整轻滑轮,使细线水平;

③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△tA和△tB , 求出加速度a;

④多次重复步骤③,求a的平均值

⑤根据上述实验数据求出动摩擦因数μ.

回答下列问题:

  1. (1) 用20分度的游标卡尺测量d时的示数如图2所示,其读数为 cm;

  2. (2) 物块的加速度a可用d、s、△tA和△tB表示为a=

  3. (3) 动摩擦因数μ可用M、m、 和重力加速度g表示为μ=

  4. (4) 如果滑轮略向下倾斜,使细线细线没有完全调节水平,由此测得的μ(填“偏大”或“偏小”);这一误差属于(填“偶然误差”或“系统误差”).

将力传感器A固定在光滑水平桌面上,测力端通过轻质水平细绳与滑块相连,滑块放在较长的小车上.如图1所示,传感器与计算机相连接,可获得力随时间变化的规律.一水平轻质细绳跨过光滑的定滑轮,一端连接小车,另一端系沙桶,整个装置开始处于静止状态.在物体与小车分离前缓慢向沙桶里倒入细沙,力传感器采集的F﹣t图象如图2所示.则(   )

A . 2.5 s前小车做变加速运动 B . 2.5 s后小车做变加速运动 C . 2.5 s前小车所受摩擦力不变 D . 2.5 s后小车所受摩擦力不变

如图甲所示,在水平放置的气垫导轨上有一带有方盒的滑块,质量为M,气垫导轨右端固定一定滑轮,细线绕过滑轮,一端与滑块相连,另一端挂有6个钩码,设每个钩码的质量为m,且M=4m.

  1. (1)

    用游标卡尺测出滑块上的挡光片的宽度,读数如图乙所示,则宽度d=cm;

  2. (2) 某同学打开气源,将滑块由静止释放,滑块上的挡光片通过光电门的时间为t,则滑块通过光电门的速度为(用题中所给字母表示);

  3. (3) 开始实验时,细线另一端挂有6个钩码,由静止释放后细线上的拉力为F1 , 接着每次实验时将1个钩码移放到滑块上的方盒中,当只剩3个钩码时细线上的拉力为F2 , 则F12F2(填“大于”、“等于”或“小于”);

  4. (4) 若每次移动钩码后都从同一位置释放滑块,设挡光片距光电门的距离为L,钩码的个数为n,测出每次挡光片通过光电门的时间为t,测出多组数据,并绘出 n﹣ 图象,已知图线斜率为k,则当地重力加速度为(用题中字母表示).

热敏电阻是传感电路中常用的电子元件.现用伏安法研究热敏电阻在不同温度下的伏安特性曲线,要求特性曲线尽可能完整.已知常温下待测热敏电阻的阻值约4~5Ω.热敏电阻和温度计插入带塞的保温杯中,杯内有一定量的冷水,其它备用的仪表和器具有:盛有热水的热水杯(图中未画出)、电源(3V、内阻可忽略)、直流电流表(内阻约1Ω)、直流电压表(内阻约5kΩ)、滑动变阻器(0~20Ω)、开关、导线若干.

  1. (1)

    在图1的方框中画出实验电路图,要求测量误差尽可能小.

  2. (2)

    根据电路图,在图2的实物图上连线(注意电表量程的选择).

某学习小组利用如图1所示的装置验证动能定理.

  1. (1) 将气垫导轨调至水平,安装好实验器材,从图2中读出两光电门中心之间的距离S=cm;

  2. (2) 测量挡光条的宽度d,记录挡光条通过光电门1和2所用的时间△t1和△t2 , 并从拉力传感器中读出滑块受到的拉力F,为了完成实验,还需要直接测量的一个物理量是

  3. (3) 该实验是否需要满足砝码盘和砝码的总质量远小于滑块、挡光条和拉力传感器的总质量?(填“是”或“否”)

某物理兴趣小组利用传感器进行探究实验,其实验装置及原理图分别如甲、乙所示.

该装置中,A、B为力传感器,研究对象是质量m=310g的金属圆柱体G,将G放在A、B的两探头之间,两探头受到压力的数据,通过传感器、数据采集器传输给计算机,数据如表1所示.

表1                  圆柱体的质量:310g

 θ/°

 0

30

45

60

90

 FA/N

 0.00

1.49

2.12

2.59

3.02

 FB/N

 3.01

 2.61

 2.13

 1.50

 0.00

  1. (1) 观察、分析数据表1,可得出:金属圆柱体重力沿斜面向下的分力FA随斜面倾角θ的增大而,垂直斜面向下的分力FB随斜面倾角θ的增大而

  2. (2) 某同学发现两传感器的读数并不是与角度的变化成正比,他猜想圆柱体所受重力及其分力间满足某个函数关系,并根据该函数关系计算两探头受到压力的理论值如表2所示(g取9.8m/s2

    表2           圆柱体的质量:310g

     θ/°

     0

    30

    45

    60

    90

     FA/N

     0.00

    1.52

    2.15

    2.63

    3.04

     FB/N

     3.04

     2.63

     2.15

     1.52

     0.00

    该同学猜测的函数关系式应当分别为:FA=,FB=(用金属圆柱体质量m、重力加速度g、斜面倾角θ表示)

  3. (3) 在实验中无论是分析“表1”还是“表2”的数据时,都认为传感器的读数都等于相应的圆柱体重力的分力,其物理学依据是(乙沿斜面方向为例);因为A传感器的读数等于A传感器所受的压力,根据此压力大小等于圆柱体沿斜面方向所受的支持力,而根据此支持力大小等于圆柱体重力沿斜面方向的分力

  4. (4) 为了减少实验误差,可采取的办法是(写出一个即可)

某同学设计了一个用打点计时器做“验证动量守恒定律”的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止的小车B相碰并粘合成一体,继续做匀速运动.他设计的具体装置如图1所示,在小车后连接着纸带,电磁打点计时器使用的电源频率为50Hz,长木板垫着小木片以平衡摩擦力.

  1. (1) 若已得到打点纸带如图2所示,并测得各计数点间距(标在图上).A为运动起点,则应该选择段来计算A碰前的速度,应选择段来计算A和B碰后的共同速度.(以上空格选填“AB”、“BC”、“CD”、“DE”)

  2. (2) 已测得小车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得碰前m1v0=kg•m/s,碰后(m1+m2)v=kg•m/s,由此得出结论.(计算结果保留三位有效数字.)

霍尔式位移传感器的测量原理如图所示,有一个沿z轴方向的磁场,磁感应强度 、k均为常数 将传感器固定在物体上,保持通过霍尔元件的电流I不变 方向如图所示 ,当物体沿z轴方向移动时,由于位置不同,霍尔元件在y轴方向的上、下表面的电势差U也不同 则(   )

A . 传感器灵敏度 与上、下表面的距离有关 B . 当物体沿z轴方向移动时,上、下表面的电势差U变小 C . 传感器灵敏度 与通过的电流有关 D . 若图中霍尔元件是电子导电,则下板电势高
传感器是一种把非电学量转换电学量的元件,常见的传感器有压力传感器、温度传感器、声音传感器和光敏电阻传感器。电饭锅中用到了 传感器,超市里的电子秤中用到了传感器。
传感器是把非电学量(如速度、温度、压力等)的变化转换成电学量的变化的一种元件,在自动控制中有着相当广泛的应用。有一种测量人的体重的电子秤。其测量部分的原理图如图中的虚线框所示,它主要由压力传感器R(电阻值会随所受压力大小发生变化的可变电阻),显示体重大小的仪表A(实质是理想的电流表)组成。压力传感器表面能承受的最大压强为1×107Pa,且已知压力传感器R的电阻与所受压力的关系如下表所示。设踏板和压杆的质量以及电源内阻可以忽略不计,接通电源后,压力传感器两端的电压恒为4.8V,取g=10m/s2

图片_x0020_2084949655

压力F/N

0

250

500

750

1000

1250

1500

……

电阻R/Ω

300

270

240

210

180

150

120

……

请回答:

  1. (1) 该秤零起点(即踏板空载时)的刻度线应标在电流表刻度盘A处。
  2. (2) 如果某人站在该秤踏板上,电流表刻度盘的示数为20mA,这个人的体重是kg。
某同学尝试把一个灵敏电流表改装成温度表,他所选用的器材有:灵敏电流表(待改装),学生电源(电动势为E,内阻不计),滑动变阻器,单刀双掷开关,导线若干,导热性能良好的防水材料,标准温度计,PTC热敏电阻R1(PTC线性热敏电阻的阻值与摄氏温度t的关系为Rt=a+kt,a>0,k>0)。

设计电路图如图所示,并按如下步骤进行操作。

图片_x0020_2059950249

⑴按电路图连接好实验器材。

⑵将滑动变阻器滑片P滑到(填“a”或“b”)端,单刀双掷开关S掷于(填“c”或“d”)端,调节滑片P使电流表满偏,并在以后的操作中保持滑片P位置不动,设此时电路总电阻为R,断开电路。

⑶容器中倒入适量开水,观察标准温度计,每当标准温度计示数下降5℃,就将开关S置于d端,并记录此时的温度t和对应的电流表的示数I,然后断开开关。请根据温度表的设计原理和电路图,写出电流与温度的关系式I=(用题目中给定的符号)。

⑷根据对应温度记录的电流表示数,重新刻制电流表的表盘,改装成温度表。根据改装原理,此温度表表盘刻度线的特点是:低温刻度在(填“左”或“右”)侧,刻度线分布是否均匀?(填“是”或“否”)。

某楼梯口的电灯开关装有传感器,天黑时,出现声音才能发光,而白天即使有声音,电灯也不能发光,该开关中有两种传感器,它们可能是(    )
A . 光敏电阻和驻极体话筒 B . 金属热电阻和光敏电阻 C . 热敏电阻和霍尔元件 D . 热敏电阻和光敏电阻
二极管具有单向导电性,其正向电阻很小,反向电阻很大,现有一个二极管其正极记为A、负极记为B.某同学研究二极管正、反向电阻的相关实验操作过程如下:
  1. (1) 先用多用电表的欧姆挡测量其电阻,其正向电阻约为10 Ω,反向电阻约为50 kΩ,则在测量二极管的正向电阻时,电表的红表笔应接(填“A”或“B”)端.
  2. (2) 该同学设计了如图所示的电路用伏安法进一步测量该二极管正、反向电压均为2 V时的电阻值,二极管接在1、2之间,电压表的内阻约为40 kΩ,选用多用电表的直流电流挡作为电流表接在3、4之间.该多用电表的直流电流有三个量程,量程和对应的内阻分别为:①50 μA,内阻约为100 Ω;②50 mA,内阻约为50 Ω;③250 mA,内阻约为10 Ω.则在实验过程中,多用电表的红表笔应与接线柱(选填“3”或“4”)相连;测二极管的反向电阻时电流表的量程应选用(选填“①”“②”或“③”),单刀双掷开关S2应拨向接点(选填“5”或“6”).

    图片_x0020_100020