磁场、电场和重力场复合 知识点题库

如图所示,在相互垂直的匀强电场和匀强磁场中,电荷量为+q的液滴在竖直面内做以速率为v、半径为R的匀速圆周运动,已知电场强度为E,磁感应强度为B,则油滴的质量 (    )

A . B . C . D .
如图所示,有一质量为 m、带电荷量为 q 的油滴,在竖直放置的两平行金属板间的匀强电场中由静止释放,可以判定(   )

A . 油滴在电场中做抛物线运动 B . 油滴在电场中做匀速直线运动 C . 油滴在电场中做匀加速直线运动 D . 油滴运动到极板上的时间只取决于两板间距离
已知质量为 m,带电量为﹣q 的小球,从水平放置的平行金属板上板小孔处,以初速度v0 竖直向下进入板间,做加速运动.已知两板间距为 d,电源能提供的电压为U 且恒定,重力加速度为g.求:

  1. (1) 平行板间电场强度大小和方向.

  2. (2) 小球到达下极板时速率v为多大?

如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里.一个质量为m=1g、带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速度下滑,当它滑行0.8m到N点时就离开壁做曲线运动.当A运动到P点时,恰好处于平衡状态,此时速度方向与水平成45°角,设P与M的高度差H为1.6m.求:

  1. (1) A沿壁下滑时克服摩擦力做的功.

  2. (2) P与M的水平距离s是多少?

如图所示,在直角坐标系xOy的第二象限存在沿y轴正方向的匀强电场,电场强度的大小为E1 , 在y轴的左侧存在垂直纸面的匀强磁场,现有一质量为m,带电荷量为+q的带电粒子从第二象限的A点(﹣3L,L)以初速度v0沿x轴正方向射入后刚好做匀速直线运动,不计带电粒子的重力.

  1. (1) 求匀强磁场B1的大小和方向;

  2. (2) 撤去第二象限的匀强电场,同时调节磁感应强度的大小为B2 , 使带电粒子刚好从B点(﹣L,0)进入第三象限,求磁感应强度B2的大小及带电粒子从A点运动到B点所用的时间.

半径为R的光滑绝缘圆环固定在竖直平面内,并且处于水平向右的匀强电场E和垂直于纸面向外的匀强磁场B中.环上套有一个质量为m的带电小球,让小球从与环心等高的P点由静止释放,恰好能滑到圆环的最高点A.求:

  1. (1) 小球的带电性质和带电量.

  2. (2) 小球运动过程中对环的最大压力.

地面附近空间中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带电油滴能沿一条与竖直方向成α角的直线MN运动(MN在垂直于磁场方向的平面内),如图所示,则以下判断中正确的是(   )

A . 如果油滴带正电,它是从M点运动到N点 B . 如果油滴带正电,它是从N点运动到M点 C . 如果电场方向水平向左,油滴是从M点运动到N点 D . 如果电场方向水平向右,油滴是从M点运动到N点
场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是(   )

A . 粒子带负电,且q= B . 粒子顺时针方向转动 C . 粒子速度大小v= D . 粒子的机械能守恒

如图甲所示,在xOy平面内有足够大的匀强电场.电场方向竖直向上,电场强度E=40N/C,在y轴左侧平面内有足够大的磁场,磁感应强度B1随时间t变化的规律如图乙所示,15π s后磁场消失,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m的圆形区域(图中未画出),且圆的左侧与y轴相切,磁感应强度B2=0.8T,t=0时刻,一质量m=8×10﹣4kg、电荷量q=+2×10﹣4C的微粒从x轴上xp=﹣0.8m处的P点以速度v=0.12m/s 向x轴正方向入射.(g取10m/s2

  1. (1) 求微粒在第二象限运动过程中离x轴、y轴的最大距离.

  2. (2) 若微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x,y).

在某空间存在着水平向右的匀强电场和垂直于纸面向里的匀强磁场,如图所示,一段光滑且绝缘的圆弧轨道AC固定在纸面内,其圆心为O点,半径R=1.8m,OA连线在竖直方向上,AC弧对应的圆心角θ=37°。今有一质量m=3.6×104kg、电荷量q=+9.0×104C的带电小球(可视为质点),以v0=4.0m/s的初速度沿水平方向从A点射入圆弧轨道内,一段时间后从C点离开,小球离开C点后做匀速直线运动,已知重力加速度g=10m/s2 , sin37°=0.6,不计空气阻力,求:

  1. (1) 匀强电场的场强E;
  2. (2) 小球射入圆弧轨道后的瞬间对轨道的压力。
如图所示,xoy为平面直角坐标系,x轴水平,y轴竖直。在x轴上、下方空间都分布着垂直xoy平面向里的匀强磁场,其磁感应强度大小分别为B、3B,整个空间还分布着沿竖直方向的匀强电场。一质量为m、电荷量为-q的小球,从坐标原点O处以速度v射入第一象限做匀速圆周运动,的方向与x轴正方向成30°角。已知重力加速度g,空气阻力不计,求:

  1. (1) 该匀强电场的场强大小和方向:
  2. (2) 小球从离开O点到第四次经过x轴时间内的平均速度;
  3. (3) 小球从离开O点后 T为粒子的运行周期)时刻的位置坐标。
如图所示,质量为m、长度为L的滑板B,静置于水平面上,滑板与地面间的动摩擦因数μ1=μ,水平面右端的固定挡板C与滑板等高。在挡板C的右边有一个区域PQMM,区域内有竖直向上的匀强电场,还有两个半径分别为R1=r和R2=3r的半圆构成的半圆环区域,在半圆环区域内有垂直纸面向里的匀强磁场,半圆环圆心O到固定挡板C顶点的距离为2r。现有一质量为m带电量为+q的小物块A(视为质点)以初速度v0=2 滑上滑板B,A与B之间的动摩擦因数μ2=3μ。当小物块A运动到滑板B右端时两者刚好共速,且滑板B刚好与挡板C碰撞,A从挡板C上方飞入PQNM区城,并能够在半圆环磁场区域内做匀速圆周运动。求:

  1. (1) A刚滑上B时,A和B的加速度大小;
  2. (2) A刚滑上B时,B右端与挡板C之间的距离S;
  3. (3) 区域PQMN内电场强度E的大小,以及要保证小物块A只能从半圆环区域的开口端飞出,磁感应强度B的取值范围。
如图所示,四个质量相同,带电荷量均为+q的a、b、c、d微粒,距离地面的高度相同,以相同的水平速度抛出,除了a微粒没有经过电场外,其他三个微粒均经过场强大小相同的匀强电场(mg>qE),这四个微粒从抛出到落地的时间分别是ta、tb、tc、td , 则(   )

图片_x0020_339168236

A . tb<ta<tc<td B . tb=tc<ta=td C . ta=td<tb<tc D . tb<ta=td<tc
如图所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场。在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球。O点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,bd沿水平方向。已知小球所受电场力与重力大小相等,现将小球从环的顶端a点由静止释放,下列判断正确的是(   )

图片_x0020_100013

A . 小球能越过与O等高的d点并继续沿环向上运动 B . 当小球运动到c点时,洛伦兹力最大 C . 小球从a点到b点,重力势能减小,电势能增大 D . 小球从b点到c点,电势能增大,动能先增大后减小
如图所示,足够长的竖直绝缘管内壁粗糙程度处处相同,处在方向彼此垂直的匀强电场和匀强磁场中,电场强度和磁感应强度的大小分别为E和B,一个质量为m,电荷量为+q的小球从静止开始沿管下滑,下列关于小球所受弹力N、运动速度v、运动加速度a、运动位移x,运动时间t之间的关系图像中正确的是(     )

A . B . C . D .
在匀强电场和匀强磁场共存的区域内,电场的场强为E , 方向竖直向下,磁场的磁感应强度为B , 方向垂直于纸面向里,一质量为m的带电粒子,在场区内的竖直平面内做匀速圆周运动,则可判断该带电质点(   )

图片_x0020_100001

A . 带有电荷量为 的正电荷 B . 沿圆周逆时针运动 C . 运动的角速度为 D . 运动的速率为
如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有沿水平方向的、垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C。在其第一象限空间有沿y轴负方向、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场。一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限。已知重力加速度g取10 m/s2。求:

图片_x0020_100029

  1. (1) 油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;
  2. (2) 油滴在P点得到的初速度大小;
  3. (3) 油滴在第一象限运动的时间以及油滴离开第一象限处的坐标值。
如图所示,粗糙水平面与竖直面内的光滑圆形轨道平滑连接,在连接点P上有一不带电的小球B保持静止,水平面上方充满水平向左的匀强电场。现有一带电量为+q的小球A从水平面上某点由静止释放,而后在小孔处与小球B发生碰撞(碰撞时间极短),碰后两球粘在一起。已知mA=1kg,mB=2kg,小球A与水平轨道间的动摩擦因数为 ,释放点与B球相距为d=2m,电场强度 ,重力加速度为g=10m/s2(两球均可视为质点,小球A运动、碰撞过程中均无电量损失,不计空气阻力)。求:

图片_x0020_100014

  1. (1) 小球A与B碰撞前瞬间的速度大小;
  2. (2) 小球A与B碰撞过程中损失的能量
  3. (3) 若要求两球碰后不脱离圆轨道,则圆轨道的半径R应满足什么条件?
如图所示,在x轴上方有一匀强电场,电场强度大小为E,方向沿y轴负方向。x轴下方有一匀强磁场,磁感应强度大小为B,方向垂直坐标平面向里。一质量为m、带电量为+q的粒了自y轴上的M点(0,d)由静止释放,经电场加速及磁场偏转后第一次向上通过x轴时,与另一质量也为m的不带电粒子发生碰撞,并结合在一起。不计粒子重力,求:

  1. (1) 带电粒子第一次向上通过x轴时的横坐标值;
  2. (2) 第一次碰撞后经过多长时间,结合成的粒子速度首次为零;
  3. (3) 若该带电粒子每次向上经过x轴时,都与一质量为m的不带电粒子发生碰撞,并结合在一起,求带电粒子释放后第n次速度为零时的位置坐标。
中国“人造太阳”在核聚变实验方面取得新突破,该装置中用电磁场约束和加速高能离子,其部分电磁场简化模型如图所示,在三维坐标系 中, 空间内充满匀强磁场I,磁感应强度大小为B,方向沿x轴正方向; 的空间内充满匀强磁场II,磁感应强度大小为 ,方向平行于 平面,与x轴正方向夹角为 的空间内充满沿y轴负方向的匀强电场。质量为m、带电量为 的离子甲,从 平面第三象限内距y轴为L的点A以一定速度出射,速度方向与z轴正方向夹角为 ,在 平面内运动一段时间后,经坐标原点O沿z轴正方向进入磁场I。不计离子重力。

  1. (1) 当离子甲从A点出射速度为 时,求电场强度的大小E;
  2. (2) 若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度
  3. (3) 离子甲以 的速度从O点沿z轴正方向第一次穿过 面进入磁场I,求第四次穿过 平面的位置坐标(用d表示);
  4. (4) 当离子甲以 的速度从 点进入磁场I时,质量为 、带电量为 的离子乙,也从O点沿z轴正方向以相同的动能同时进入磁场I,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差 (忽略离子间相互作用)。