电磁感应与电路 知识点题库

如图所示,倾角θ为30°的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一匝数n=10匝、质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动.(g=10m/s2).求:

  1. (1) ab边刚进入磁场时,线圈所受安培力的大小及方向;

  2. (2) ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;

  3. (3) 线圈穿过磁场过程产生的热量.

如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,一个磁感应强度B=0.50T的匀强磁场垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.30Ω的电阻,导轨宽度L=0.40m.电阻为r=0.20Ω的金属棒ab紧贴在导轨上,导轨电阻不计,现使金属棒ab由静止开始下滑0.7m 后以5m/s的速度匀速运动.(g=10m/s2

求:

  1. (1) 金属棒的质量m;

  2. (2) 在导体棒下落2.70m内,回路中产生的热量Q.

如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1.0m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.20kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.

  1. (1) 求金属棒沿导轨由静止开始下滑时的加速度大小;

  2. (2) 当金属棒下滑速度达到稳定时,电阻R消耗的功率为8.0W,求该速度的大小;

  3. (3) 在上问中,若R=2.0Ω,金属棒中的电流方向由a到b,求磁感应强度的大小和方向.(g=10m/s2 , sin37°=0.60,cos37°=0.80)

截面积为0.2m2的100匝圆形线圈A处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按 =0.02T/s的规律均匀减小,开始时S未闭合.R1=4Ω,R2=6Ω,C=30µF,线圈内阻不计.求:

  1. (1) S闭合后,通过R2的电流大小;

  2. (2) S闭合后一段时间又断开,则S切断后通过R2的电量是多少?

如图所示,间距为L电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,左右导轨分别于水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为B1 , B2的匀速磁场,两处的磁场互不影响,质量均为m,电阻均为r的导体棒ab,cd与两平行导轨垂直放置且接触良好,ab棒由静止释放,cd棒始终静止不动,求:

  1. (1) ab棒速度大小为v时通过cd的电流大小和cd棒受到的摩擦力大小;
  2. (2) ab棒匀速运动时速度大小及此时cd棒消耗的电功率.
质量为m边长为L,单位长度电阻率为 的正方形导线框以速度V从垂直于纸面方向的匀强磁场下边界竖直抛入 其中 。运动了时间t后离开磁场。求线框离开磁场时速度大小。 已知重力加速度为g且忽略空气阻力  

如图所示,abcd为质量m的U形导轨,abcd平行,放在光滑绝缘的水平面上,另有一根质量为m的金属棒PQ平行bc放在水平导轨上,PQ棒右边靠着绝缘竖直光滑且固定在绝缘水平面上的立柱e、f,U形导轨处于匀强磁场中,磁场以通过e、fO1O2为界,右侧磁场方向竖直向上,左侧磁场方向水平向左,磁感应强度大小都为B , 导轨的bc段长度为L , 金属棒PQ的电阻R , 其余电阻均可不计,金属棒PQ与导轨间的动摩擦因数为μ , 在导轨上作用一个方向向右,大小F=mg的水平拉力,让U形导轨从静止开始运动,若导轨从开始运动到达到最大速度υm的时间为t。设导轨足够长。求:

 

  1. (1) 导轨在运动过程中的最大速度υm 
  2. (2) 从开始运动到达到最大速度υm过程中,系统增加的内能为多少?
随着航空领域的发展,实现火箭回收利用,成为了各国都在重点突破的技术。其中有一技术难题是回收时如何减缓对地的碰撞,为此设计师在返回火箭的底盘安装了电磁缓冲装置。该装置的主要部件有两部分:①缓冲滑块,由高强绝缘材料制成,其内部边缘绕有闭合单匝矩形线圈abcd;②火箭主体,包括绝缘光滑缓冲轨道MN、PQ和超导线圈(图中未画出),超导线圈能产生方向垂直于整个缓冲轨道平面的匀强磁场。当缓冲滑块接触地面时,滑块立即停止运动,此后线圈与火箭主体中的磁场相互作用,火箭主体一直做减速运动直至达到软着陆要求的速度,从而实现缓冲。现已知缓冲滑块竖直向下撞向地面时,火箭主体的速度大小为v0 , 经过时间t火箭着陆,速度恰好为零;线圈abcd的电阻为R,其余电阻忽略不计;ab边长为l,火箭主体质量为m,匀强磁场的磁感应强度大小为B,重力加速度为g,一切摩擦阻力不计,求:

  1. (1) 缓冲滑块刚停止运动时,线圈ab边两端的电势差Uab
  2. (2) 缓冲滑块刚停止运动时,火箭主体的加速度大小;
  3. (3) 火箭主体的速度从v0减到零的过程中系统产生的电能。
如图所示,水平放置的两平行金属导轨间距l=2m,虚线CD左侧的轨道光滑,右侧粗糙;导轨右侧两端点与匝数N=200、横截面积S=100cm2、总电阻r=0. 25Ω的线圈相连,另有一金属棒PQ垂直搁置在导轨上,距离CD为0.6m;垂直放置在导轨左端的金属棒MN通过水平绝缘轻杆固定,两金属棒的质量均为m=0.1kg,电阻均为R=0.5Ω;MNDC区域存在竖直向上的匀强磁场,磁感应强度 T.在t=0时刻,闭合电键K,同时金属棒PQ以1m/s的初速度向左运动,同时线圈内磁场的磁感应强度B1随时间t的变化符合以下规律: .两金属棒与导轨始终接触良好,PQ棒与导轨之间的动摩擦因数μ=0.1,导轨电阻不计.

图片_x0020_100020

  1. (1) 通过定量计算分析4s内导体棒PQ的运动情况;
  2. (2) 计算4s内通过金属棒PQ的电荷量大小;
  3. (3) 2~4s内绝缘轻杆右端受到的弹力大小和方向?
如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中(   )

图片_x0020_1886125484

A . 运动的平均速度大小为 B . 下滑的位移大小为 C . 产生的焦耳热为qBLv D . 受到的最大安培力大小为
如图MN、PQ是竖直的光滑平行导轨,相距L=0.5m。上端接有电阻R=0.8Ω,金属杆ab质量m=100g,电阻r=0.2Ω。整个装置放在垂直向里的匀强磁场中,磁感应强度B=1.0T。杆ab从轨道上端由静止开始下落,下落过程中ab杆始终与轨道保持良好的接触,当杆下落10m时,达到最大速度。试讨论:

图片_x0020_1210197623

  1. (1) ab杆的最大速度;
  2. (2) 从静止开始达最大速度电阻R上获得的焦耳热;
  3. (3) 从静止开始达最大速度的过程中,通过金属杆的电量。
如图所示,足够长、电阻可以忽略的矩形金属框架abcd水平放置,ad与 bc之间的距离为 L=1m,定值电阻阻值 R1=R2=2.0Ω。垂直于框架放置一根质量m=0.2kg、电阻 r=1.0Ω 的金属棒ef,距离框架左侧x=0.5m,棒ef与导轨间的动摩擦因数μ=0.5,已知最大静摩擦力等于滑动摩擦力,取g=10m/s2

  1. (1) 若在abcd区域存在竖直向上的匀强磁场,某时刻开始磁感应强度随时间变化,变化的规律为B=1+2t(T),保持电键 S断开,则需要经过多长时间导体棒ef开始运动,此时磁感应强度为多大?
  2. (2) 若保持(1)问中棒ef刚要开始运动时的磁感应强度不变,闭合电键 S,同时对ef施加一水平向右的恒定拉力F=4N,求此后运动过程中,回路消耗的最大电功率。
如图所示,两根竖直固定的足够长的光滑金属导轨ab和cd相距L=1m,金属导轨电阻不计。两根水平放置的金属杆MN和PQ质量均为0.1kg,在电路中两金属杆MN和PQ的电阻均为R=1.5Ω,PQ杆放置在水平绝缘平台上。整个装置处于垂直导轨平面向里的磁场中,g取10m/s2

图片_x0020_100020

  1. (1) 若将MN杆固定,两金属杆间距为d=2m,现使磁感应强度从零开始以 =0.5T/s的变化率均匀地增大,经过多长时间,PQ杆对面的压力为零?
  2. (2) 若将PQ杆固定,让MN杆在竖直向上的恒定拉力F=16N的作用下由静止开始向上运动,磁感应强度恒为3T。若杆MN发生的位移为h=1.8m时达到最大速度,求最大速度。
如图甲是法拉第发明的铜盘发电机,也是人类历史上第一台发电机。利用这个发电机给平行金属板电容器供电,如图乙。已知铜盘的半径为L,加在盘下侧的匀强磁场磁感应强度为B1 , 盘匀速转动的角速度为ω,每块平行板长度为d,板间距离也为d,板间加垂直纸面向内、磁感应强度为B2的匀强磁场。下列选项正确的是(   )

A . 若圆盘按照图示方向转动,那么平行板电容器C板电势高 B . 铜盘产生的感应电动势为 C . 若一电子从电容器两板中间水平向右射入,恰能匀速直线运动从右侧水平射出,则电子射入时速度为 D . 若有一带负电的小球从电容器两板中间水平向右射入,在复合场中做匀速圆周运动又恰好从极板右侧射出,则射入的速度
如图,电阻不计的光滑平行金属长导轨与水平面夹角θ=53°,导轨间距l=1m,中间的abcd区域内存在宽度为l、垂直于导轨向上的有界匀强磁场,磁感应强度B=0.3T。甲、乙、丙三根完全相同的金属杆,质量均为m=0.03kg。初始时刻,甲位于磁场的上边界,乙位于甲的上方l处,丙固定在导轨的底端。同时由静止释放甲、乙两杆,并立即对甲施加一个平行于导轨的外力F,使甲在磁场内保持沿导轨向下的加速度a=gsinθ的匀加速直线运动。已知乙进入磁场即开始做匀速直线运动,甲、乙均与导轨接触良好,g取10m/s2 , sin53°=0.8,cos53°=0.6.求:

  1. (1) 乙进入磁场的瞬间,乙中的电流强度I
  2. (2) 每根金属杆的电阻R;
  3. (3) 甲在磁场内运动的过程中,电路总功率每增大0.1W,甲沿导轨下滑的距离为多少;
  4. (4) 试写出乙穿出磁场前的整个运动过程中(甲尚未与丙碰撞),甲的电功率随时间变化的表达式,并画出相应的图像。
如图所示,在磁感应强度为B、方向竖直向下的匀强磁场中,间距为L的光滑水平U型导体框左端连接一阻值为R的电阻,质量为m、电阻为r的导体棒PQ置于导体框上。不计导体框的电阻。时PQ棒以水平向右的初速度开始运动,到达位置c时棒刚好静止,其中a、b与b、c的间距相等。下列分析正确的是(   )

A . 时PQ棒两端电压 B . PQ棒运动过程中的平均速度 C . PQ棒运动过程中克服安培力做的总功小于 D . PQ棒在由a→b与b→c的两个过程中回路中产生的热能
如图甲所示,空间存在一宽度为的有界匀强磁场,磁场方向垂直纸面向里.在光滑绝缘水平面内有一边长为的正方形金属线框,其质量、电阻 , 在水平向左的外力作用下,以初速度匀减速进入磁场,线框平面与磁场垂直,外力大小随时间变化的图线如图乙所示,以线框右边刚进入磁场时开始计时,求:

  1. (1) 匀强磁场的磁感应强度
  2. (2) 线框进入磁场的过程中,通过线框的电荷量
  3. (3) 线框向右运动的最大位移为多少?
  4. (4) 当线框左侧导线即将离开磁场的瞬间,撤去外力 , 则线框离开磁场过程中产生的焦耳热多大?
如图所示,NQ和MP是两条平行且倾角θ=30°的光滑金属轨道,在两条轨道下面在PQ处接着QT和PS两条平行光滑的金属轨道,轨道足够长,其电阻忽略不计.金属棒ab、cd放在轨道上,始终与轨道垂直且接触良好.金属棒ab,cd的质量均为m,长度均为L.连金属棒的长度恰好等于轨道的间距,它们与轨道构成闭合回路,金属棒ab的电阻为2R,cd的电阻为R.磁场方向均垂直于导轨向上(不考虑PQ交界处的边界效应,可认为磁场在PQ处立即变为竖直向上),磁感应强度大小为B.若先保持金属棒cd不动,ab在沿导轨向下的力F作用下,开始以加速度a沿倾斜轨道向下做匀加速直线运动.经过t0时刻,ab棒恰好到PQ位置,此时撤去力F,同时释放cd金属棒,求:

  1. (1) ab棒匀加速过程中,外力F随时间t变化的函数关系;
  2. (2) 两金属棒撤去F后的运动过程中,直到最后达到稳定,金属棒cd产生的热量Q;
  3. (3) 两金属棒撤去F后的运动过程中,直到最后达到稳定,通过金属棒cd产生的电荷量q;
如图所示,一滑块放在水平轨道上,下方用绝缘杆固定一边长为a=0.4m、匝数为10匝的正方形导线框,已知导线框的总电阻为R=1Ω,导线框、绝缘杆以及滑块的总质量为M=2kg,滑块与水平轨道之间的动摩擦因数为μ=0.5。水平轨道的正下方有足够长的宽为a的长方形磁场区域,磁场方向垂直纸面向里,磁感应强大小为B0=0.5T,虚线MN为磁场区域的中心线,且导线框的上边刚好与虚线MN重合,现给滑块施加一水平向右的外力F,使整个装置以恒定的速度v=0.4m/s运动,重力加速度为g取10m/s2。求:

  1. (1) 导线框上半部分刚进入磁场时,线框中感应电流的大小;
  2. (2) 导线框上半部分刚要全部进入磁场时外力F的大小;
  3. (3) 当导线框上半部分完全进入磁场区域时,立即将整个装置锁定,之后磁感应强度的大小以B=0.5+2t(其B的单位为T,t的单位为s)的规律变化,则此后2s时间内,导线框产生的焦耳热Q的大小。
如图所示,MN和PQ是电阻不计的平行金属导轨,其间距为L,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接,右端接一个阻值为R的定值电阻。平直部分导轨左边区域有宽度为d、方向竖直向上、磁感应强度大小为B的匀强磁场。质量为m、接入电路的电阻也为R的金属棒从高度为h处由静止释放,到达磁场右边界处恰好停止。已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨垂直且接触良好,重力加速度为g。在金属棒穿过磁场区域的过程中,求:

  1. (1) 流过金属棒的最大电流;
  2. (2) 金属棒产生的焦耳热;
  3. (3) 通过金属棒的电荷量。