2021届山东省新高考地区高三入学调研物理题免费在线检测

1. 选择题 详细信息
下列叙述正确的是(  )
A.康普顿效应和光电效应深入地揭示了光的粒子性的一面。 前者表明光子具有能量,后者表明光子除具有能量之外还具有动量
B.氢原子的核外电子,由离核较远的轨道自发跃迁到离核较近轨道,放出光子,电子的动能减小,电势能增加
C.处于基态的氢原子吸收一个光子跃迁到激发态,再向低能级跃迁时辐射光子的频率一定大于吸收光子的频率
D.卢瑟福依据极少数α粒子发生大角度偏转提出了原子的核式结构模型
2. 选择题 详细信息
如图所示是某一单色光由空气射入截面为等腰梯形的玻璃砖,或由该玻璃砖射入空气时的光路图,其中正确的是( )(已知该玻璃砖对该单色光的折射率为1.5)

A.图甲、图丙 B.图甲、图丁 C.图乙、图丙 D.图乙、图丁
3. 选择题 详细信息
人们对手机的依赖性越来越强,有些人喜欢躺着看手机,经常出现手机砸伤眼睛的情况。若手机质量为120g,从离人眼约20cm的高度无初速掉落,砸到眼睛后手机未反弹,眼睛受到手机的冲击时间约为0.2s,取重力加速度g=10m/s2;下列分析正确的是(  )

A.手机与眼睛作用过程中手机动量变化约为0.48kg·m/s
B.手机对眼睛的冲量大小约为
C.手机对眼睛的冲量方向竖直向上
D.手机对眼睛的作用力大小约为0.24N
4. 选择题 详细信息
如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是(  )

A.粒子在a点的加速度大小大于在b点的加速度大小
B.粒子在a点的电势能大于在b点的电势能
C.粒子在a点的速度大小大于在b点的速度大小
D.a点的电势高于b点的电势
5. 选择题 详细信息
石拱桥是中国传统的桥梁四大基本形式之一。假设某拱形桥为圆的一部分,半径为。一辆质量为的汽车以速度匀速通过该桥,图中为拱形桥的最高点,圆弧所对的圆心角为关于对称,汽车运动过程中所受阻力恒定,重力加速度为。下列说法正确的是(  )

A.汽车运动到点时对桥面的压力大于
B.汽车运动到点时牵引力大于阻力
C.汽车运动到点时,桥面对汽车的支持力等于汽车重力
D.汽车从点运动到点过程中,其牵引力一定一直减小
6. 选择题 详细信息
在圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间越长的带电粒子(  )
A.速率一定越小 B.速率一定越大
C.在磁场中通过的路程越长 D.在磁场中的周期一定越大
7. 选择题 详细信息
如图甲所示为一霓虹灯供电的电路。变压器输入端接有熔断电阻,其允许最大电流为100mA,阻值忽略不计,原、副线圈匝数比为10∶1,副线圈电路中接有10个霓虹灯,每个霓虹灯的额定电压为10V,额定功率为1W,R为滑动变阻器。当变压器输入端电压为220V时,示波器描绘出每一个霓虹灯的电流图象如图乙所示(霓虹灯的电阻可视为不变)(  )

A. 变压器输入端的电流频率为100 Hz
B. 此时滑动变阻器的阻值为20Ω
C. 该电路允许并联连接的霓虹灯的个数为25个
D. 电路正常工作时,若某一个霓虹灯发生故障而断路,那么应当将滑动变阻器的阻值减少,才能保证其他霓虹灯保持原有的亮度
8. 选择题 详细信息
如图,一正方形闭合线圈,从静止开始下落一定高度后,穿越一个有界的匀强磁场区域,线圈上、下边始终与磁场边界平行。自线圈开始下落到完全穿越磁场区域的过程中,线圈中的感应电流I、受到的安培力F及速度v随时间t变化的关系,可能正确的是( )

A.
B.
C.
D.
9. 选择题 详细信息
下列说法正确的是(  )
A.布朗运动就是液体分子的无规则运动
B.空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值
C.尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降至热力学零度
D.将一个分子从无穷远处无限靠近另一个分子,则这两个分子间分子力先增大后减小最后再增大,分子势能是先减小再增大
10. 选择题 详细信息
一列横波沿水平方向传播,质点A平衡位置位于处,质点P平衡位置位于处,质点A的振动图像如图甲所示,如图乙所示是质点A刚振动了0.1s时的波形图,以下说法正确的是( )

A.波速
B.波源的最初振动方向向上
C.时波传到P点
D.当质点P点处于波峰位置时,A质点处于波谷位置
11. 选择题 详细信息
已知一人造卫星在离地球表面h高处的轨道上做周期为T的匀速圆周运动,地球的半径为R,万有引力常量为G。则下列说法中正确的是(  )
A.卫星运行的线速度大小为 B.卫星运行的线速度小于第一宇宙速度
C.卫星的向心加速度大小为 D.地球表面的重力加速度大小为
12. 选择题 详细信息
如图1所示,小物块静止在倾角θ=37°的粗糙斜面上.现对物块施加一个沿斜面向下的推力F,力F的大小随时间t的变化情况如图2所示,物块的速率v随时间t的变化规律如图3所示,取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是(  )

A.物块的质量为1kg
B.物块与斜面间的动摩擦因数为0.7
C.0~3s时间内力F做功的平均功率为0.32W
D.0~3s时间内物体克服摩擦力做的功为5.12J
13. 实验题 详细信息
在“测定金属丝的电阻率”的实验中,小张同学选用毫米刻度尺测量金属丝的有效长度,当金属丝的左端与毫米刻度尺的“0”刻度对齐时,右端如图甲所示;用螺旋测微器测量金属丝的直径如图乙所示;用伏安法测得多组U、I数据,做出该金属丝的伏安特性曲线如图丙所示。

(1)金属丝的有效长度L为______cm,直径D为______mm,电阻R为______Ω。
(2)将测得的数据代入公式______,即可求出金属丝的电阻率。(用第(1)问给出的字母表示)
14. 实验题 详细信息
如图所示,用质量为m的重物通过滑轮牵引小车,使它在长木板上运动,打点计时器在纸带上记录小车的运动情况。利用该装置可以完成“探究动能定理”的实验。

(1)打点计时器使用的电源是_________(选填选项前的字母)。
A.直流电源 B.交流电源
(2)实验中,需要平衡摩擦力和其他阻力。正确操作方法是_______(选填选项前的字母)。
A.把长木板右端垫高 B.改变小车的质量
(3)在不挂重物且______(选填选项前的字母)的情况下,轻推一下小车,若小车拖着纸带做匀速运动,表明已经消除了摩擦力和其他阻力的影响。
A.计时器不打点 B.计时器打点
(4)接通电源,释放小车,打点计时器在纸带上打下一系列点,将打下的第一个点标为O。在纸带上依次去A、B、C……若干个计数点,已知相邻计数点间的时间间隔为T。测得A、B、C……各点到O点的距离为x1、x2、x3……,如图所示。

实验中,重物质量远小于小车质量,可认为小车所受的拉力大小为mg,从打O点打B点的过程中,拉力对小车做的功W=_______,打B点时小车的速度v=________。
(5)以v2为纵坐标,W为横坐标,利用实验数据作如图所示的v2–W图象。由此图象可得v2随W变化的表达式为_________________。根据功与能的关系,动能的表达式中可能包含v2这个因子;分析实验结果的单位关系,与图线斜率有关的物理量应是_________。

(5)假设已经完全消除了摩擦力和其他阻力的影响,若重物质量不满足远小于小车质量的条件,则从理论上分析,图中正确反映v2–W关系的是______________。
A. B. C. D.
15. 解答题 详细信息
如图所示,长0.32m的不可伸长的轻绳一端固定于O点,另一端拴一质量为0.3kg的小球B静止在水平面上,绳恰好处于伸直状态。一质量为0.2kg的小球A以某一速度沿水平面向右运动,与小球B发生弹性正碰,碰撞后小球B恰好能在竖直平面内完成完整的圆周运动,不计空气阻力,重力加速度取10m/s2,求∶
(1)碰撞后小球B的速度大小;
(2)碰撞前小球A的速度大小。
16. 解答题 详细信息
在光滑水平地面上有xOy坐标系,质量m=100g的质点以速度v0=10m/s沿x轴正方向运动,通过坐标原点O时受到与y轴平行的力F=1N,F大小保持不变。
(1)F沿y轴正方向作用2s后立即变为沿y轴负方向,求t=3s时质点速度的大小和方向;
(2)F沿y轴正方向作用1s后立即变为沿y轴负方向,又作用1s后立即变为沿y轴正方向,求t=3s时质点的位置坐标。
17. 解答题 详细信息
如图所示,一根长、一端封闭的细玻璃管开口向上竖直放置,管内用长的水银柱封闭了一段长的空气柱。已知大气压强为,玻璃管周围环境温度为27。求:
(1)若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长;
(2)接着缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银恰好要溢出。
18. 解答题 详细信息
如图所示,虚线AB、BC、CD将平面直角坐标系四个象限又分成了多个区域。在第一、二象限有垂直纸面向里的匀强磁场,磁感应强度大小为。在第三、四象限中,-2d<y<0区域又分成了三个匀强电场区域,其中在x>d区域有沿x轴负方向的匀强电场;在x<-d区域有沿x轴正方向的匀强电场,电场强度大小相等;-d<x<d区域有沿y轴正方向的匀强电场,电场强度是另外两个电场强度的2倍。第二、四象限中,y<-2d区域内有垂直纸面向里的匀强磁场。一个质量为m,电荷量为q的带电粒子,以速度v0由原点O沿y轴正方向射入磁场。运动轨迹恰好经过B(-d,-2d)、C(d,-2d)两点,第一次回到O点后,进入竖直向上电场区域,不计粒子重力,求:
(1)电场区域内的电场强度大小E;
(2)y<-2d区域内磁场的磁感应强度B2;
(3)由原点O出发开始,到第2次回到O点所用时间。