河南省驻马店市新蔡县第一中学2020-2021年高一1月物理题同步训练免费试卷

1. 选择题 详细信息
下列说法正确的是(  )
A. 物体在恒力作用下不可能做曲线运动
B. 物体在变力作用下一定是做曲线运动
C. 物体做曲线运动,沿垂直速度方向的合力一定不为零
D. 两个直线运动的合运动一定是直线运动
2. 选择题 详细信息
质量为1kg的物体A置于水平地面上,物体与地面的动摩擦因数μ=0.2。从t=0时刻开始,物体以初速度v0向右滑行,同时受到一个水平向左、大小恒为F=1N的作用力。若取向右为正方向,重力加速度g=10m/s2,下列反映物体受到的摩擦力Ff随时间变化的图象是
A. B. C. D.
3. 选择题 详细信息
在足够高的空中某点竖直上抛一物体,抛出后第5s内物体的位移大小是4m,设物体抛出时的速度方向为正方向,忽略空气阻力的影响,g取10m/s2。则关于物体的运动下列说法正确的是( )
A. 物体的上升时间可能是4.9s
B. 第5S内的平均速度一定是-4m/s
C. 4S末的瞬时速度可能是10m/s
D. 10S内位移可能为-100m
4. 选择题 详细信息
甲、乙两物体静止在光滑水平面上,现对乙施加一变力 F,力 F 与时间 t 的关系如图所示,在运动过 程中,甲、乙两物体始终相对静止,则( )

A. 在 t0 时刻,甲、乙间静摩擦力最小 B. 在 t0 时刻,甲、乙两物体速度最小
C. 在 2t0 时刻,甲、乙两物体速度最大 D. 在 2t0 时刻,甲、乙两物体位移最小
5. 选择题 详细信息
如图所示,在倾角的光滑斜面上用细绳拴一质量m=2kg的小球,小球和斜面静止时,细绳平行于斜面。当斜面以5m/s2的加速度水平向右做匀加速运动时,细绳拉力大小为F1,当斜面以20m/s2的加速度水平向右做匀加速运动时,细绳拉力大小为F2,取。设上述运动过程中小球与斜面始终保持相对静止,则为(  )

A. B. C. D.
6. 选择题 详细信息
如图所示,劲度系数为k的轻质弹簧的一端固定在墙上,另一端与置于水平面上的质量为m的物体A接触(A与弹簧未连接),质量为m的物体B紧挨A放置,此时弹簧水平且无形变,用水平力F缓慢推动物体B,在弹性限度内弹簧长度被压缩了x0,此时物体A、B静止,已知物体A与水平面间的动摩擦因数为μ,物体B与水平面间的摩擦不计,撤去F后,物体A、B开始向左运动,A运动的最大距离为4x0,重力加速度大小为g。则(  )

A.物体A和B先做匀加速运动,再做匀减速运动 B.物体刚向左运动时的加速度大小为
C.物体A、B运动后分离 D.物体A、B运动x0-后分离
7. 选择题 详细信息
直立的轻弹簧一端固定在地面上,另一端拴住一个铁块,现让铁块在竖直方向做往复运动,从块所受合力为零开始计时,取向上为正方向,其运动的位移-时间图像如图所示(  )

A.t=0.25s时物体对弹簧的压力最大
B.t=0.25s和t=0.75s两时刻弹簧的弹力相等
C.t=0.25s至t=0.50s这段时间物体做加速度逐渐增大的加速运动
D.t=0.25s至t=0.50s这段时间内物体的动能和弹簧的弹性势都在增大
8. 选择题 详细信息
如图,一粗糙斜面放置在水平地面上,斜面体顶端装有一光滑定滑轮,细绳跨过滑轮,其一端悬挂物块 N,另一端与斜面上的物块 M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动 N,直至悬挂 N的细绳与竖直方向成 45°,斜面体和 M始终保持静止.则在此过程中

A.M所受细绳的拉力一直增大
B.M所受斜面的摩擦力一直增大
C.地面对斜面体的摩擦力一直增大
D.M所受斜面的摩擦力可能先减小后增大
9. 选择题 详细信息
如图所示,光滑的水平地面上,可视为质点的两滑块A、B在水平外力作用下紧靠在一起压紧弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为,以两滑块此时的位置为坐标原点建立如图所示的一维坐标系,某时刻仅将外力突然反向并使B向右做匀加速运动,已知A、B质量关系为,下列关于外力F、两滑块间弹力与滑块B的位移变化的关系图象正确的是(  )

A. B. C. D.
10. 选择题 详细信息
如图所示,固定斜面与水平面的夹角为θ,弹簧的下端固定在挡板上,上端有一可视为质点的物体,但弹簧和物体不粘连,现用沿斜面向下的外力推着物体,使其静止于A点,此时弹簧的压缩量为x0,撤去外力后物体向上运动3x0时速度减为零。已知物体的质量为m,与斜面间的动摩擦因数为μ,重力加速度为g,弹簧的劲度系数为k,物体向上运动的过程中,下列说法正确的是(  )

A.从撤去外力到物体速度达到最大时物体经过的位移x=
B.物体做匀减速直线运动的时间t=
C.刚撤去外力时物体的加速度a=
D.物体向上先做匀加速直线运动,后做匀减速直线运动
11. 实验题 详细信息
探宄学习小组欲探究物体的加速度与力、质量的关系,他们在实验室组装了一套如图所示的装置,图中小车的质量用M表示,钩码的质量用m表示。要顺利完成该实验:

(1)为使小车所受合外力等于细线的拉力,应采取的措施是_____ ; 要使细线的拉力约等于钩码的总重力,应满足的条件是________
(2)如图是实验中得到的—条纸带,A 、B、C、D、E、F为6个相邻的计数点,相邻计数点间还有四个点未标出。打点计时器每隔0.02s打—个点,利用图中给出的数据可求出小车的加速度a=___m/s2 (结果保留2位有效数字)

(3)某同学经过测量,计算得到如下数据,请在a-F图中做出小车加速度与所受的合外力的关系图像______

组别

1

2

3

4

5

6

7

M/kg

0.58

0.58

0.58

0.58

0.58

0.58

0.58

F/N

0.10

0.15

0.20

0.25

0.30

0.35

0.40

a/m s 2

0.13

0.17

0.26

0.34

0.43

0.51

0.59


(4)由图像可看出,该实验存在较大的误差,产生误差的主要原因是________

12. 实验题 详细信息
某实验小组利用如图1所示的实验装置测量小滑车和木板之间的动摩擦因数。主要实验步骤如下:

i.将带滑轮的长木板固定在水平桌面上,按图连接实验装置,小滑车置于打点计时器附近,牵引端只挂一个钩码。
ii.接通电源,由静止释放小滑车,小滑车运动至木板左端附近时制动小滑车,关闭电源,取下纸带,计算出小车匀加速运动时的加速度
iii.依次从小滑车上取下第一个、第二个、第三个……钩码挂在牵引端,重复步骤ii,分别计算小车匀加速运动时的加速度……
iv.在坐标系中描点,用直线拟合,计算动摩擦因数(m为牵引端钩码总质量,设小滑车及实验中所有钩码的总质量为M)。请回答下列问题:
(1)关于实验原理及操作,下列说法正确的是_____。
A.实验中必须平衡摩擦力
B.滑轮与小滑车间的细绳应与木板平行
C.必须保证牵引端钩码的总质量远小于小滑车和车上钩码的总质量
D.还需要测得小滑车的质量
(2)某条纸带测量数据如图2所示,A、B、C、D、E、F、G为7个相邻的计数点,相邻的两个计数点之间还有四个点未画出。量出相邻的计数点之间的距离分别为AB=4.22 cm、BC=4.65 cm、CD=5.08 cm、DE=5.49 cm、EF=5.91 cm、FG=6.34 cm 。已知打点计时器的工作频率为50 Hz,则小滑车的加速度值为a=m/s2 (结果保留2位有效数字)______;

(3)测得图线在a轴上的截距为b,已知重力加速度为g,则小滑车与木板间的动摩擦因数表达式为_______。
13. 解答题 详细信息
质量为30kg的小孩坐在10kg的雪橇上静止不动,大人用与水平方向成37°斜向上的拉力拉动雪橇,力的大小为100N,雪橇与地面间的动摩擦因数为0.2,(g=10m/s2.sin37°=0.6,cos37°=0.8 )求:
(1)地面对雪橇的支持力大小。
(2)雪橇运动的加速度大小。
(3)4s内雪橇的位移大小。
14. 解答题 详细信息
如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0m,质量为M=10kg的物体以v0=6.0m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5。传送带顺时针运转的速度v=4.0m/s,(g取10m/s2,sin37°=0.6,cos37°=0.8)求:

(1)物体从A点到达B点所需的时间;
(2)若传送带顺时针运转的速度可以调节,要使物体能到达B点,传送带速率应满足什么条件?物体从A点到达B点的最短时间是多少?(其他条件不变)
15. 解答题 详细信息
风洞可产生方向、大小都可以调节控制的各种风力。如图所示为风洞里模拟实验的示意图。一质量为m=1kg的实验对象(可视为质点)套在一根固定的直杆上,直杆与水平面夹角为θ=30°。风洞产生竖直向上的、大小F=20N的风力作用在实验对象上,实验对象从M点由静止开始沿直杆向上运动。已知实验对象与杆之间的动摩擦因数为m=。取g=10m/s2。求:

(1)实验对象刚开始运动时的加速度大小;
(2)若杆上有一点N位于M点上方,且M、N两点间距为L=2.4m,欲使实验对象到达N点,求风力F作用的最短时间。
16. 解答题 详细信息
(题文)(题文)在粗糙水平面上,一电动玩具小车以的速度做匀速直线运动,其正前方平铺一边长为L=0.6m的正方向薄板,小车在到达薄板前某处立即刹车,靠惯性运动s=3m的距离后沿薄板一边的中垂线平滑地冲上薄板。小车与水平面以及小车与薄板之间的动摩擦因数均为,薄板与水平面之间的动摩擦因数,小车质量为M为薄板质量m的3倍,小车可看成质点,重力加速度,求:
(1)小车冲上薄板时的速度大小;
(2)小车刚冲上薄板到停止时的位移大小。