磁场和电场的复合 知识点题库

如图,空间某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述三种情况下,从A到B点、A到C点和A到D点所用的时间分别是t1、t2和t3 , 比较t1、t2和t3的大小,则有(粒子重力忽略不计)    (     )

A . t1=t2=t3 B . t2<t1<t3 C . t1=t2<t3 D . t1=t3>t2
初速为零的正离子经过电势差为U的电场加速后,从离子枪T中水平射出后进入无限大的磁感应强度B的匀强磁场中,距离离子枪右侧d处有一长为d的正对平行金属板,金属板间距也为d,且两金属板中线恰好与离子从离子枪出射的初速度方向共线,如图所示.不计重力,离子荷质比在什么范围内离子才能打在金属板上.

如图在坐标系xOy里,有质量为m,电荷量为+q的粒子从原点O沿y轴正方向以初速度v0射出,现要求该粒子能通过点P(l,﹣d),可通过在粒子运动的空间范围内加适当的“场”来实现,粒子重力忽略不计(静电力常量为k)

  1. (1) 若只在x轴上某点固定一带负电的点电荷Q,使粒子在点电荷产生的电场中做匀速圆周运动,并能到达P点,求点电荷Q的电荷量大小;

  2. (2) 若在整个Ⅰ、Ⅱ象限内加垂直纸面向外的匀强磁场,并在第Ⅳ象限内加平行于x轴,沿x轴正方向的匀强电场,也能使粒子运动到达P点.如果此过程中粒子在电、磁场中运动的时间相等,求磁感应强度B的大小和电场强度E的大小.

如图所示,在xOy直角坐标平面内﹣0.05m≤x<0的区域有垂直纸面向里的匀强磁场,磁感应强度B=0.4T,0≤x≤0.08m的区域有沿﹣x方向的匀强电场.在x轴上坐标为(﹣0.05m,0)的S点有一粒子源,它一次能沿纸面同时向磁场内每个方向发射一个比荷 =5×107C/kg,速率v0=2×106m/s的带正电粒子.若粒子源只发射一次,其中只有一个粒子Z恰能到达电场的右边界,不计粒子的重力和粒子间的相互作用(结果可保留根号).求:

  1. (1) 粒子在磁场中运动的半径R;

  2. (2) 第一次经过y轴的所有粒子中,位置最高的粒子P的坐标;

  3. (3) 电场强度E.

如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区.已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1 , t2和t3 , 离开三点时的动能分别是Ek1、Ek2、Ek3 , 粒子重力忽略不计,以下关系式正确的是( )

A . t1=t2<t3 B . t1<t2=t3 C . Ek1=Ek2<Ek3 D . Ek1>Ek2=Ek3
如图所示,某空间存在互相正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一个带负电荷的小球以一定初速度(速度方向平行于纸面)由a点进入电磁场,经过一段时间运动至b点,下列说法正确的是(   )

A . 从a到b,小球可能做匀速直线运动 B . 从a到b,小球不可能做匀变速运动 C . 从a到b,小球可能做匀速圆周运动 D . 从a到b,小球机械能可能不变
如图所示,在真空中半径为r=0.1m的圆形区域内有垂直于纸面向外的匀强磁场及水平向左的匀强电场,磁感应强度B=0.01T,ab和cd是两条相互垂直的直径,一束带正电的粒子流连续不断地以速度v=1×103 m/s从c点沿cd方向射入场区,粒子将沿cd方向做直线运动,如果仅撤去磁场,带电粒子经过a点,如果撤去电场,使磁感应强度变为原来的 ,不计粒子重力,下列说法正确的是(   )

A . 电场强度的大小为10 N/C B . 带电粒子的比荷为1×106 C/kg C . 撤去电场后,带电粒子在磁场中运动的半径为0.1 m D . 带电粒子在磁场中运动的时间为7.85×10﹣5 s
如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上,将一套在杆上的带正电的小球从a端由静止释放后,小球先作加速运动,后作匀速运动到达b端,已知小球与绝缘杆间的动摩擦系数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是 ,求带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值.

在图中虚线所围的区域内,存存电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转,设重力可以忽略不计,则在这区域中的E和B的方向不可能是(   )

A . E和B都沿水平方向,并与电子运动的方向相同 B . E和B都沿水平方向,并与电子运动的方向相反 C . E竖直向上,B垂直纸面向外 D . E竖直向上,B垂直纸面向里
如图所示为质谱仪的原理图,电荷量为q、质量为m的带正电的粒子从静止开始经过电势差为U的加速电场后,进入粒子速度选择器,选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E,方向水平向右.带电粒子能够沿直线穿过速度选择器,从G点既垂直直线MN又垂直于磁场的方向射入偏转磁场.偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场.带电粒子经偏转磁场后,最终到达照相底片的H点.已知偏转磁场的磁感应强度为B2 , 带电粒子的重力可忽略不计.求:

  1. (1) 粒子从加速电场射出时速度的大小;

  2. (2) 粒子速度选择器中匀强磁场的磁感应强度B1的大小和方向;

  3. (3) 带电粒子进入偏转磁场的G点到照相底片H点的距离L.

如图是质谱仪的原理图,若速度相同的同一束粒子沿极板P1、P2的轴线射入电磁场区域,由小孔S0射入右边的偏转磁场B2中,运动轨迹如图所示,不计粒子重力.下列相关说法中正确的是(   )

A . 该束带电粒子带负电 B . 速度选择器的P1极板带负电 C . 在B2磁场中运动半径越大的粒子,质量越大 D . 在B2磁场中运动半径越大的粒子,比荷 越小

如图所示,在xoy坐标系中,y>0的范围内存在着沿y轴正方向的匀强电场,在y<0的范围内存在着垂直纸面的匀强磁场(方向未画出).已知oa=oc=cd=L,ob= .现有一个带电粒子,质量为m,电荷量大小为q(重力不计).t=0时刻,这个带电粒子以初速度v0从a点出发,沿x轴正方向开始运动.观察到带电粒子恰好从d点第一次进入磁场,然后从O点第﹣次离开磁场.试回答:

  1. (1) 判断匀强磁场的方向;

  2. (2) 匀强电场的电场强度;

  3. (3) 若带电粒子在y轴的a、b之间的不同位置以相同的速度v0进入电场,第一次离开磁场的位置坐标x与出发点的位置坐标y的关系式.

如图所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里.一个质量为m=1g、带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速度下滑,当它滑行0.8m到N点时就离开壁做曲线运动.当A运动到P点时,恰好处于平衡状态,此时速度方向与水平成45°角,设P与M的高度差H为1.6m.求:

  1. (1) A沿壁下滑时克服摩擦力做的功.
  2. (2) P与M的水平距离s是多少?
如图所示为一真空示波管,电子从灯丝K发出(初速度不计),经灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点.已知加速电压为U1 , M、N两板间的电压为U2 , 两板间的距离为d,板长为L1 , 板右端到荧光屏的距离为L2 , 电子的质量为m,电荷量为e.求:

  1. (1) 电子穿过A板时的速度大小;
  2. (2) 电子从偏转电场射出时的侧移量;
  3. (3) P点到O点的距离.
如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y轴负方向的匀强电场,场强为E。一质量为m,电荷量为-q的粒子从坐标原点O沿着y轴正方向射出。射出之后,第三次到达x轴时,它与点O的距离为L。

  1. (1) 求此粒子射出时的速度v    
  2. (2) 运动的总路程s(重力不计)。
如图所示,在平面坐标系xOy内,第二三象限内存在沿y轴正方向的匀强电场,第一四象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外,一带正电的粒子从第三象限中的Q(-2L,-L)点以速度 沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:

  1. (1) 电场强度与磁感应强度大小之比。
  2. (2) 粒子在磁场与电场中运动时间之比。
如图所示,在平面直角坐标系xOy内,第二、三象限内存在沿y轴正方向的匀强电场,第一、四象限内存在半径为L的圆形匀强磁场,磁场方向垂直于坐标平面向外。一个比荷(q/m)为K的带正电的粒子从第三象限中的Q(-2L,-L)点以速度 沿x轴正方向射出,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场。不计粒子重力,求:

图片_x0020_100017

  1. (1) 电场强度E;
  2. (2) 从P点射出时速度 的大小;
  3. (3) 粒子在磁场与电场中运动时间之比.
如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M点水平射入场区,经一段时间运动到N点,关于小球由M到N的运动,下列说法正确的是(   )

A . 小球可能做匀变速运动 B . 小球一定做变加速运动 C . 小球动能可能不变 D . 小球机械能守恒
回旋加速器的工作原理如图甲所示,置于高真空中的D形金属盒半径为R,两盒间距很小,带电粒子穿过的时间可以忽略不计。磁感应强度为的匀强磁场与盒面垂直。圆心O处粒子源产生的粒子,质量为m、电荷量为 , 在加速器中被加速,加速电压u随时间的变化关系如图乙所示,其中。加速过程中不考虑相对论效应和变化电场对磁场分布的影响。求:

  1. (1) 粒子从静止开始被加速,估算该粒子离开加速器时获得的动能
  2. (2) 若时粒子从静止开始被加速,求粒子从静止开始加速到出口处所需的时间;
  3. (3) 实际使用中,磁感应强度会出现波动,波动结束,保持 , ()不变,若在时产生的粒子第一次被加速,要实现连续n次加速,B可波动的系数的极限值。
如图所示,在第二象限内有一抛物线 ,其方程为 ),在拋物线的上方存在一竖直向下的匀强电场E(大小未知)。在抛物线 每个位置上连续发射质量为m、电荷量为 的粒子。以大小为 的初速度水平向右射入电场、观察发现所有粒子均能到达坐标原点O。第四象限内有一边长为l、其中两边分别与x轴和y轴重合的正方形边界,边界内存在垂直于纸面向外的匀强磁场,磁感应强度大小为 为与x轴平行的可上下移动的荧光屏,初始位置与磁场的下边界重合。不计粒子重力和粒子之间的相互作用力。

  1. (1) 求电场强度E的大小。
  2. (2) 所有粒子到达坐标原点O进入磁场后,在荧光屏还没有移动时,求粒子在磁场中运动的最长时间
  3. (3) 若将荧光屏缓慢向上移动,求在向上移动的过程中光屏上发光的最大长度。