题目

已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极值,直线y=2x+3到曲线y=f(x)在原点处的切线所成的角为45°.(1)求f(x)的解析式;(2)若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值. 答案:解:(1)由题意有f(0)=c=0,f′(x)=3x2+2ax+b且f′(1)=3+2a+b=0.又曲线y=f(x)在原点处的切线的斜率k=f′(0)=b,而直线y=2x+3到此切线所成的角为45°,∴1=tan45°=.解得b=-3,代入f′(1)=3+2a+b=0得a=0,∴f(x)=x3-3x. (2)由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上递增,在[-1,1]上递减.又f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2,∴f(x)在[-2下来不属于山顶洞人生产生活情况的是(   )A懂得钻孔技术     B懂得人工取火     C会制作装饰品    D开始使用天然火
数学 试题推荐